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Aerodynamic power loss

Pd :%*p*CD*A*V?’

P, Power required to overcome aerodynamic drag
C, Aerodynamic drag coefficient

A Projected frontal area of the vehicle

V' Velocity of the vehicle

p Air density
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Key variables for aerodynamic efficiency

* Velocity — most powerful parameter — power
requirement (fuel consumption) varies as the
cube of velocity

* Aerodynamic drag coefficient represents the
slipperiness of the vehicle

* Projected area is effectively governed by vehicle
dimensional regulations — the lower and
narrower the vehicle the better

* Carriers have the ability optimize aerodynamic
loss through speed control.

Woodrooffe Dynamics LLC W Slide 4




Aero Enhancements
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Boat tails reduce the area of negative pressure at
the rear of the vehicle which reduces drag force
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Tyre rolling resistance

e Effort to reduce tyre rolling resistance have been
ongoing for decades

 Rubber compound chemistry, carcass and tread
design are primary design factors influencing
rolling resistance

* Tyre choice and inflation pressure are key
management/operational factors influencing
rolling resistance.
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Drive Tire Rolling Resistance vs. Time

emewBest Duals essswBest WBS e Future Duals es»s Future WBS

9.0
Assume 5.5 mpg 125
.k
2 8.0 | 111
x
‘é 7.0 7 ¢
X S
Q
£ 6.0 | ~800 Ibs. vehicle 83 8
z mass reduction. +~0.90 mpg g
& 50 = ’ 69 O
.lén Sy =) =
— o
€ 4.0 195
+~1.02 mpg
3.0 |
1995 2000 2005 2010 2015 2020 2025
Year

Woodrooffe Dynamics LLC W Slide 9




Engine Efficiency

* Modern truck engine thermal efficiency is
approximately 42 percent, i.e. only 42 percent of
the fuel is converted to mechanical work

* 1960 through 2003 thermal efficiency has
increased by approximately 40 percent

* Emissions control has complicated engine design

e 2003, a typical heavy-duty truck engine cost
approximately SUS 9,000 - today it costs
approximately SUS 30,00
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Heavy-duty diesel engine thermal efficiency trend
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Heavy-duty diesel engine emissions trend
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Kinetic energy management

1

kenetic energy = > mv

44 tonne truck (about 30 cars)
100 km/h = 17.0 mega joules
50 km/h = 4.2 mega joules

2

Speed change from 50 to 100 km/h consume 4 times
more enerqgy than from 0 to 50 km/h

US Class 8 truck fuel bill SUS50,000 (72,000 liters)/yr
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Kinetic Energy Management

* Vehicle speed is an option for energy management

* Increasing seed prior to short hill climbs to reduce
spikey engine power demands can improved fuel
efficiency.

* Reducing speed at the crest of a hill and accepting
some overspeed at the bottom conserves energy

* Such speed management strategies will be at odds
with speed monitoring technology if limits are
exceeded — what can be done about this?
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Conclusions

* Several strategies are available for truck energy
conservation

* The truck owner and operator have significant
control over energy conservation and fuel
economy through equipment choice and
operation strategies

* Technology improvement is entering the “hard
vards” phase as much of the low hanging fruit has
been picked
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Thank You

John Woodrooffe
Principal, Woodrooffe Dynamics LLC

Phone: (613) 513-8886 | Email: jhnfw@woodrooffe.com
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