

Trucks that Refuse to Crash

Driver Assistance and Automation Technology

John Woodrooffe

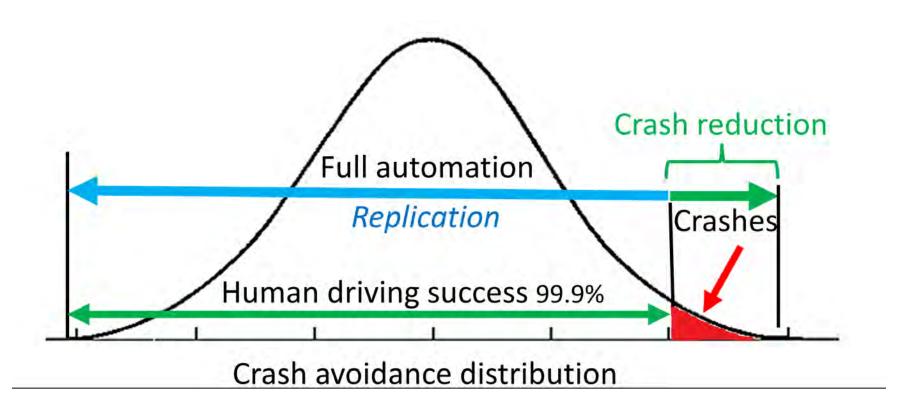
University of Michigan Emeritus

Presentation to

October 24 - 26, 2017 Rotorua, New Zealand

Automated Commercial Vehicles

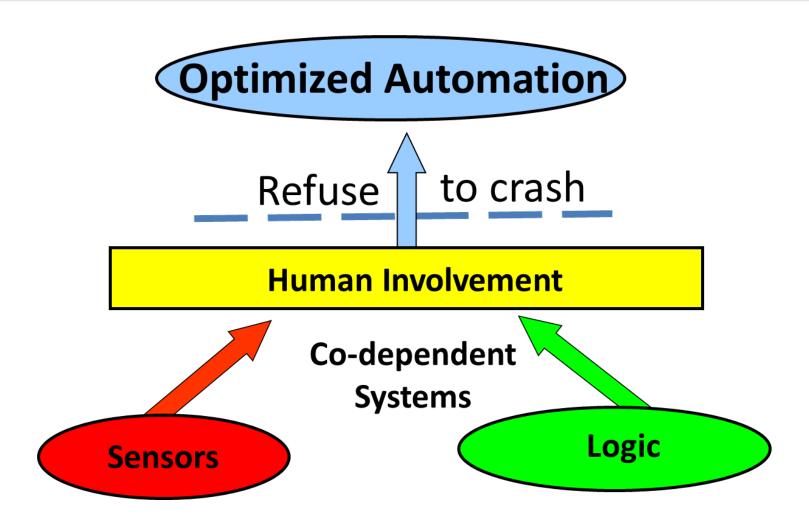
- How do trucks differ from cars?
- How smart do automated vehicles need to be?
- What are the levels of automation?
- Will the technology gain wide acceptance?
- Will people want to be subservient to vehicles?


Automated Driving Levels (SAE J3016)

Level 0	No automation
Level 1	Driver Assist - adaptive cruise control, auto windshield wipers, automatic lights, anything that supports the driver (e.g. ESC, V2V)
Level 2	Partial Automation - hands off and feet off but eyes on. Driver is responsible - Low speed congested traffic
Level 3	Conditional Automation - hands off feet off eyes off – shared dual control but <i>driver is responsible</i>
Level 4	High Automation – Vehicle controls all aspects of the dynamic driving task but some modes may involve the driver
Level 5	Full Automation - complete machine control – Driver has no responsibility at all.

The Complexity of Human

Replicating the human



The challenge of driverless vehicles

- Driverless vehicles are a first world indulgence, a captivating and seductive idea
- A revolution in artificial intelligence is required
- Connected vehicles will need to be in place
- Sensor, logic and control systems greatly increase vehicle complexity – failure risk and unintended consequence are high

Driverless vehicles represent one of our greatest engineering challenges

Eliminating Crashes

Alternative strategy

Vehicles refusing to crash

- Eliminating crash occurrence through automated intervention
- Maintains focus on safety chasing the driverless vehicle dream distracts from safety
- Retains human perception, anticipation and intuition – cannot yet be replicated
- Provides early and increasing safety benefits
- Let crash refusal strategies lead to automation

New York Times Editorial

(THE EDITORIAL BOARD OCT. 14, 2017)

Would You Buy a Self-Driving Future From These Guys?

New York Times Editorial

(THE EDITORIAL BOARD OCT. 14, 2017)

- "The hype around automated cars is belied by the struggles these machines have..."
- "...auto and tech lobbyists, have proposed bipartisan bills that would let industry roll out automated cars more quickly by exempting them from existing safety regulations."
- "A bill passed by the House last month would let manufacturers sell up to 25,000 automated cars a year without meeting all federal safety standards, and up to 100,000 cars after three years."

New York Times Editorial

(THE EDITORIAL BOARD OCT. 14, 2017)

 "States and cities that wish to regulate selfdriving cars will also be disappointed. The House and Senate bills, as a further boon to industry, would prohibit such action."

Conclusions

- US Federal politicians have embraced the self driving cars at the expense of safety
- Failure to understand the magnitude and complexity of developing these vehicles is lost on many in the legislature.
- Developing vehicles that refuse to crash prioritizes safety and provides a path to driverless vehicles.

Thank You

John Woodrooffe
Principal, Woodrooffe Dynamics LLC

Phone: (613) 513-8886 | Email: jhfw@woodrooffe.com