

ECONOMIC IMPACT OF HPV FOR WOODCHIP TRANSPORT IN AUSTRALIA

Mark Brown, CRC Forestry – University of Melbourne Damian Walsh, CRC Forestry – University of Tasmania

Overview

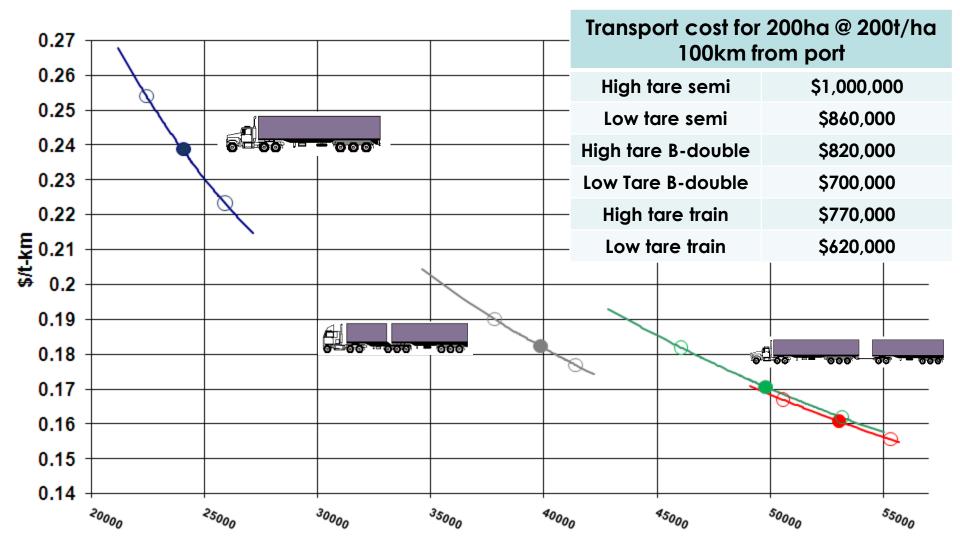
- Where the current fleet sits
- Increased freight task in Green Triangle
- HPV with available technology
 - Quad B-double
- HPV with new technology
 - Steerable wheel

Technology

FOCUS ON POTENTIAL ECONOMIC IMPACT FROM PBS APPLICATION

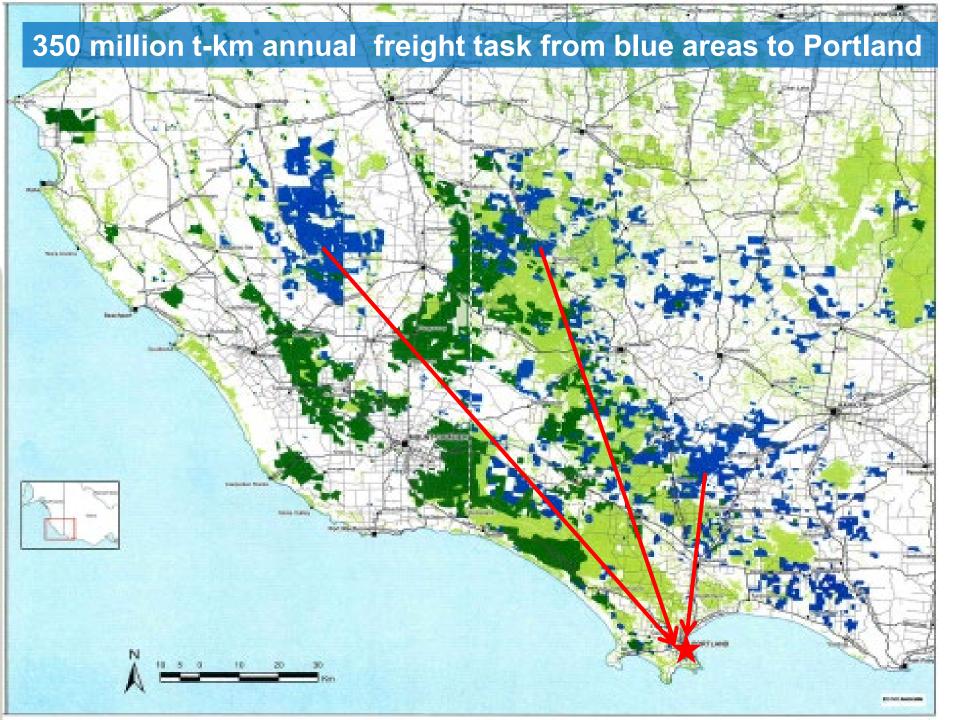
Case study 1 Evaluation of current fleet

- Collected weigh bridge data
 - 6 companies
 - 6 to 12 months of deliveries each
 - Included
 - Date/time
 - Vehicle ID
 - Empty (tare) weight
 - Payload
 - etc


Case study 1 Evaluation of current fleet

		# Trucks	# Loads	Legal GVM (t)	Averag e Tare (t)	Average Potential Payload (t)
6 ¹ 00 - 000	Semi- Trailers	97	9962	42.5	18.3	24.2
	B-doubles	87	17212	62.5	22.7	39.8
0 ⁴ 00 - 000 - 000 - 000	79t Road Trains	209	20071	79.0	28.6	50.4

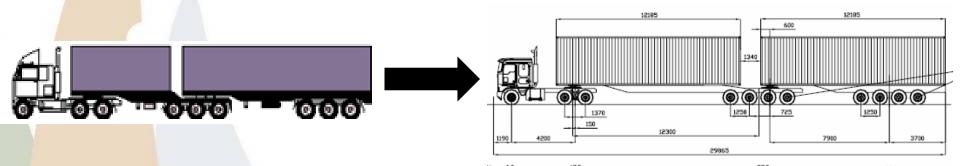



Importance of Payload

Average Payload (Kg)

Importance of Payload

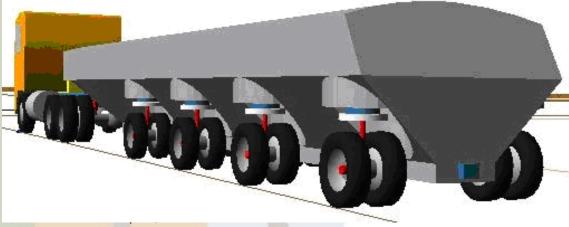
Available technology Quad B-Double


- Uses proven technology
 - B-double trailer design
 - Self steer axles

Transport Technology

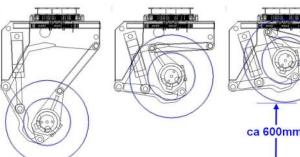
 Has PBS approval through NTC Blueprint (www.ntc.gov.au)

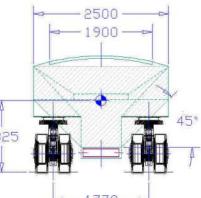
Available technology Quad B-Double

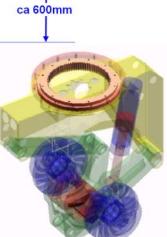

	B-double	Quad-B-double	Difference
			(%)
Payload (t)	39.8	51.9	30.4%
Fuel use (l/t-km)	0.033	0.029	12.1%
Operating cost(\$/t-km)	0.181	0.148	18.2%
Trips per year	70,352	53,950	23.3%

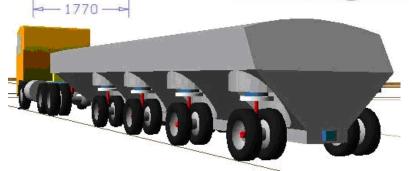
New Technology Steerable Wheel

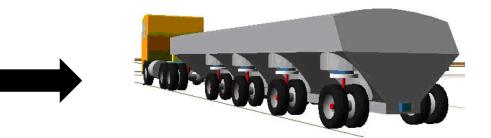
- Modular steerable wheel groups
- Limited use in indivisible loads
- Prototype trailer planned for bulk transport







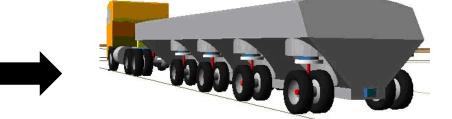

		Performance Value	
	Performance Standard	Bulk products	
1	Startability	24%	
2	Gradeability		
	a) Maintain forward motion on grade	33.20%	
	b) Minimum speed on 1% grade	93.7km/h	
3	Acceleration Capability		
4	Tracking Ability on a Straight Path	2.8m	
5	Overtaking Provision (Level of Service)	18.75 OAL	
6	Low-Speed Swept Path Width	5.9m	
7	Frontal Swing		
	a) Prime mover	0.3m	
	b) Semi-trailers		
	i) maximum of difference (MoD)	n/a	Å
	ii) difference of maxima (DoM))	n/a	1325
8	Tail Swing	0.19m	7
9	Steer Tyre Friction Demand	34.00%	
10	Static Rollover Threshold	0.67g	
11	Rearward Amplification	1	
12	High-Speed Transient Offtracking	0.1m	
13	Yaw Damping Coefficient	1	
14	Directional Stability Under Braking	ABS/EBS	



New Technology 19m Steerable Wheel

Transport Technology

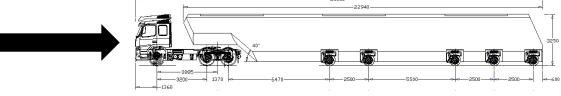
& Product



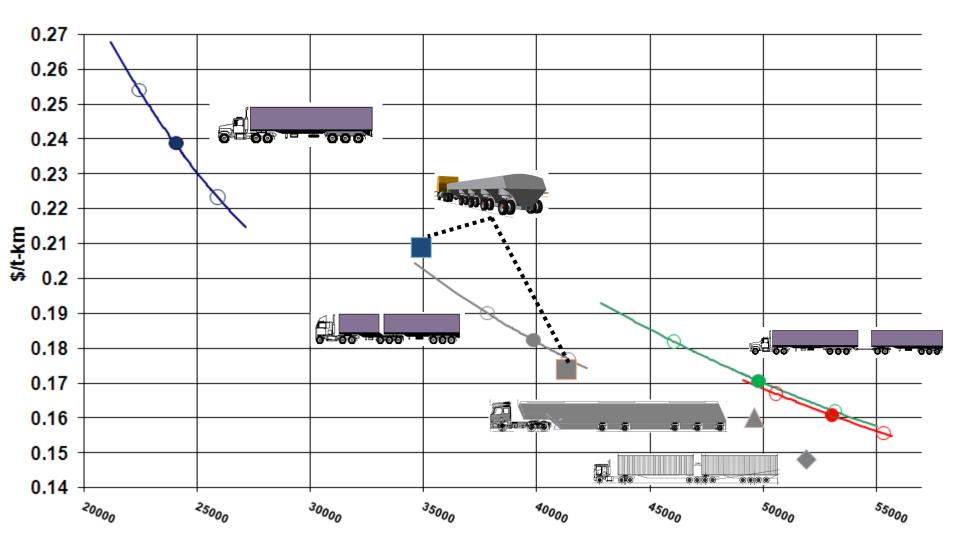
	Semi trailer	18.75-SW-L1	Difference (%)
Payload (t)	24.2	34.9	44.2%
Fuel use (l/t-km)	0.042	0.031	26.2%
Operating cost(\$/t-km)	0.238	0.209	12.2%
Trips per year	28,926	20,058	30.7%

New Technology 19m Steerable Wheel

	B-double	18.75-SW-L2	Difference (%)
Payload (t)	39.8	41.3	3.8%
Fuel use (l/t-km)	0.033	0.027	18.2%
Operating cost (\$/t-km)	0.181	0.174	3.9%
Trips per year	70,352	67,796	3.6%



New Technology 26m Steerable Wheel Concept


Transport Technology

	B-double	26-SW-L2	Difference (%)
Payload (t)	39.8	49.6	24.6%
Fuel use (l/t-km)	0.033	0.026	21.2%
Operating cost(\$/t-km)	0.181	0.160	11.6%
Trips per year	70,352	56,452	19.8%

High Productivity Vehicles in context

Average Payload (Kg)

Conclusion

- Major new freight task in GT
- Opportunity in existing fleet to improve
- Blueprint Quad B-double offers good alternative to B-double
- Steerable wheel offers good alternatives for whole task

CRC for Forestry Forestry ECONOMIC IMPACT OF HPV FOR WOODCHIP TRANSPORT IN AUSTRALIA

Mark Brown (<u>mwbrown@unimelb.edu.au</u>) Damian Walsh (<u>damianw@unimelb.edu.au</u>)

www.crcforestry.com.au

