

Creating forest sector solutions

www.fpinnovations.ca

Development of a Roll-Coupled Hitch for Truck/Trailers James Sinnett Seamus Parker

July 28, 2010 IRTENZ Conference, Rotorua

Background

MOU 31 000 kg MAX

MOU 21 000 kg MAX

- Truck-trailer configurations are:
 - widely used in Western Canada & the world
 - versatile & manoeuvrable
 - pintle hitch makes them less dynamically stable than a tractor/semi-trailer
 - leading to MOU weight restrictions

- To improve truck-trailer dynamic performance and thereby improve safety
- To improve configuration productivity by utilizing full axle load capacity
 - Reduction in fuel consumption and GHG emissions estimated to be:
 - ~5% (for truck / full-trailers), and
 - ~6% (for truck / pony trailers)

- Many potential solutions evaluated
 - Optimization of vehicle dimensions
 - Mechanical trailer dampening hardware
 - Electronic dynamic controllers

- Roll coupling hardware deemed optimal solution to improve performance:
 - will meet performance criteria under current dimensional allowances
 - will facilitate straightforward regulatory enforcement
 - simulations showed significant improvement in Load Transfer Ratio (LTR), meeting the TAC performance measure (LTR <0.60)
 - LTR the ratio of difference between sum of right wheel loads
 & left wheel loads to the sum of all wheel loads

- Proposed strength requirements were developed from existing C-dolly specifications (Transport Canada Standard 903).
 - Increased for higher payloads
- The proposed requirements specified:
 - Hitch axial strength (400 kN pull; 130 kN vertical; 40 kN lateral)
 - Hitch torsional strength (60 kN-m)
 - Hitch torsional stiffness (4 kN-m/deg)

Prototype Development

- Prototype hitches were developed and built to meet these requirements
 - FPInnovations & Arctic Trailers design & build a full-trailer hitch
 - Larry Wulff (Wolf Trailer Company) design & build a pony trailer hitch
 - Included selective roll-coupling & self-alignment
 - FPInnovations hitch modified to incorporate Wolf Trailer design

Hitch/drawbar Torsional Testing

- Do drawbars meet torsional strength requirements?
 - Requirements derived from Cdolly standard
 - Torsional strength of at least 60 kN•m
 - Torsional stiffness of at least 4 kN•m/deg

Torsional Testing - Results

FPInnovations

Hitch/drawbar Torsional Testing

Conclusions:

- Torsional strength
 - Both the full-trailer hitch & the pony trailer hitch were able to sustain over the 60 kN•m of torque required
- Torsional stiffness
 - Both the full-trailer hitch & the pony trailer hitch had a torsional stiffness over 3 times the required 4 kN•m/deg

Vehicle Stability Testing

- Vehicle stability (tilt-table) testing undertaken to quantify the effect of roll-coupling
- Evaluating LTR & Static Rollover Threshold (SRT)
 - SRT the maximum lateral acceleration (in g's) a vehicle can sustain without rolling over

Vehicle Stability Testing

	Drawbar Type	Pony trailer Ioads (kg)	Full-trailer loads (kg)
1a	standard	21 000	31 000
1b	standard	24 000	34 000
2a	roll-coupled	21 000	31 000
2b	roll-coupled	24 000	34 000

- Two conditions evaluated:
 - Truck free to roll : steady state stability
 - Truck fixed to table : dynamic stability (phase shift)

Vehicle Stability Testing

FPInnovations

Roll coupling enables increased load (24 000 kg) to be carried without sacrificing stability).497 24 000 Trailer Load (kg) 0.447 Non-roll-coupled Z Roll-coupled 0.507 21 000 0.480 0.00 0.10 0.20 0.30 0.400.50 0.60 Lateral Acceleration at trailer lift-off (g)

Roll coupling reduces roll unit LTR

Conclusions:

- Roll-coupling demonstrated improved stability for truck/pony trailer
- A roll-coupled pony trailer with 24 000 kg load showed improved stability relative to a non-roll coupled unit with 21 000 kg trailer load
- Recommendations:
- Allow full axle weight allowances for rollcoupled pony trailers

Roll coupling (somewhat) improves static stability at both payloads

Roll coupling reduces roll unit LTR

- Dynamic benefits of roll-coupling expected to be higher than shown statically
 - Even after lift-off roll-coupling would resist trailer roll-over
 - Further dynamic modelling was conducted

FPInnovation

- Dynamic benefits of roll-coupling expected to be higher than shown statically
 - Even after lift-off roll-coupling would resist trailer roll-over
 - Further dynamic modelling was conducted

FPInnovatio

Conclusions:

- Roll-coupling demonstrated improved stability for truck/full trailer
- Effects of roll-coupling greater at higher lateral accelerations (more severe manoeuvres)
 - Due to high levels of compliance in vehicle
- Roll-coupled full trailer with 34 000 kg load performed similar (dynamically) to a non-roll coupled unit with 31 000 kg trailer load

Recommendations:

- Allow full axle weight allowances for rollcoupled full trailers
- Roll-coupled full trailer manufacturers should reduce compliance in the vehicle
 - Reduce turntable lash
 - Stiffen the drawbar / dolly connection
 - Stiffen the trailer frame

In-Service Evaluations

- Field trials conducted on both logging & pony trailers. Both:
 - Were easy to connect / Dis-connect
 - Felt to be much more stable on the road
 - Provided driver with feedback from trailer
 - Had a tighter hitch connection with less "jarring" impacts
 - Handled more like a 5th wheel hitch than a pintle hitch
- No operational or maintenance issues were found

- BC is now (as of July 15th) allowing full axle weight allowances for roll-coupled pony trailers
 - On a permit basis
- Roll-coupled hitch requirements (and certification):
 - Minimum roll torque capacity of 60 kN-m
 - Minimum roll stiffness of 4 kN-m per degree
- BC is reviewing the testing results for the fulltrailer and is expected to make a decision soon.

- Other Jurisdictions in Canada are looking at following BC's lead in allowing roll-coupled trailers
 - Initially expected to require In-Service Evaluations
 - Conducted by FPInnovations
 - Followed by operational Permits
 - Similar to BC

Acknowledgements & Questions

Creating forest sector solutions

www.fpinnovations.ca

IRTENZ

Transport Teehnology & Productivity

Development of a Roll-Coupled Hitch for Truck/Trailers

July 28, 2010 IRTENZ Conference, Rotorua